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Abstract 
The previous theory of X-ray diffraction in crystals 
with anisotropic X-ray susceptibility [Dmitrienko 
(1983). Acta Cryst. A39, 29-35] is applied to cubic 
crystals. Such a theory is needed if the X-ray 
wavelengths are near the absorption edges because 
in this case the X-ray susceptibility may be 
anisotropic. The most general form of the spatially 
dependent tensor of X-ray susceptibility is obtained 
for all cubic space groups. This tensor is anisotropic 
at any point of a unit cell except those with cubic 
point symmetry (being averaged over a unit cell 
the tensor becomes isotropic providing the macro- 
scopic isotropy of cubic crystals). From the tensor of 
susceptibility the structure amplitudes and new 
extinction rules are derived for the glide-plane and 
screw-axis forbidden reflections (such reflections are 
forbidden if the susceptibility is isotropic). For 
example, the hhh forbidden reflections remain extin- 
guished even if the anisotropy is taken into account. 
Further restrictions on the structure amplitudes of 
forbidden reflections are obtained with the natural 
assumption that the anisotropy of susceptibility is 
localized at the special atomic positions. The tensor 
form of the structure amplitudes of nonforbidden 
reflections is also discussed. The general methods are 
illustrated by their application to the A15 structure 
(space group Pm3n). 

i 

Introduction 

Structurally forbidden Bragg reflections are com- 
monly used as direct indications of the thermal 
motion and chemical binding of atoms in crystals 
(Dawson, 1967; Belyakov, 1971; Borie, 1981). The 
chemical binding and thermal motion lead to the 
asphericity of atomic electron density and, therefore, 
the conventional extinction rules may be violated. 
However, in this case the extinction rules obtained 
for general atomic positions remain valid; for 
example, the glide-plane and screw-axis forbidden 
reflections remain extinguished. Besides, the chemical 
binding and the anisotropy of the local atomic 
environment lead to the polarization anisotropy of 
X-ray susceptibility which makes a crystal locally 
birefringent and dichroic (especially for the X-ray 
wavelengths near the absorption edges; see a review 
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paper by Kolpakov, Bushuyev & Kuz'min, 1978). If 
this anisotropy is taken into account then the glide- 
plane and screw-axis extinction rules are no longer 
valid (Templeton & Templeton, 1980; Dmitrienko, 
1981). Thus, the glide-plane and screw-axis forbidden 
reflections may be excited and the intensity of these 
reflections depends on the anisotropy of susceptibility 
alone (to emphasize this, hereafter these reflections 
will be called ATS reflections, where ATS denotes 
the anisotropy of the tensor of susceptibility).* New 
extinction rules and the structure amplitudes of ATS 
reflections have been obtained from the symmetry 
considerations in the previous paper (Dmitrienko, 
1983; referred to hereafter as paper I). It was shown 
in paper I that the properties of ATS reflections are 
very unusual. 

The present paper contains a detailed description 
of ATg reflections in cubic crystals. In this case the 
macroscopic dichroism and birefringence are absent 
[we neglect the possible effects of spatial dispersion 
(Agranovich & Ginzburg, 1966)]. Thus, ATS reflec- 
tions give us unique information about the local 
anisotropy of susceptibility and, hence, about the 
anisotropy of chemical bonds, crystal fields, etc. The 
effect of the anisotropy of susceptibility on the proper- 
ties of nonforbidden reflections is also described 
below and it is shown that even in the most sym- 
metrical cubic crystals the structure amplitudes of the 
most symmetrical reflections can contain an asym- 
metric part. 

The tensor of X-ray susceptibility of cubic crystals 
As in paper I, we shall use the symmetry consider- 
ations to obtain the most general form of the spatially 
dependent tensor of X-ray susceptibility )~(r) which 
gives at every point r the local relationship between 
the X-ray electric field E(r) and the polarization of 
the crystal P(r): 

47rP(r) = ,~(r)E(r). (1) 

The tensor ,~(r) should be invariant under all sym- 
metry transformations which belong to the space 

* The glide-plane and screw-axis forbidden reflections may be 
also excited in the case of MSssbauer y-ray diffraction (see a review 
paper by Belyakov, 1975). 
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group of the crystal. The common feature of all cubic 
space groups is a threefold rotation axis directed 
along a cubic diagonal. Requiring the invariance of 
~(r) under this rotation and using the methods 
developed in paper I, one obtains the following gen- 
eral form of ,~(r) in cubic crystals 

{a~(x,y,z)  a2(z,x,y) a2(y ,z ,x)~ 

f ( ( x , y , z )=~a2( z , x , y )  a , (y , z ,x )  a2(x,y,z)  l ,  
ka2(y, z, x) a2(x, y, z) al(z, x, y ) /  

(2) 

where am(r) and a2(r) are the arbitrary functions of r 
with the periodicity of the Bravais lattice of the crys- 
tal; a~(r) may be complex-valued functions because 
of the X-ray absorption; the system of axes used in 
(2) is the one conventional for cubic space groups 
(International Tables for X-ray Crystallography, 1952). 
One can easily prove that ,~(r) is really invariant under 
120 ° rotation around a threefold cubic axis, that is 

A A 

~'(r) = R3~'(r')R-3' , (3) 

where r '=/~3~r;  /~3 is the matrix of 120 ° rotation 
around the cubic axis, 

/~3 = 0 (4) 
1 

[see also the paper by Belyakov, Dmitrienko & Osad- 
chii (1982)]. 

Other symmetry operations lead to some additional 
properties of functions a~(r). For example, let us con- 
sider the crystals with the space group 0 3, Pm3n. To 
provide the invariance of,~(r) under the mirror reflec- 
tion m, the functions a~(r) should have the following 
properties: 

a,(x, y, z)= a,(~, y, z)= at(x, fi, z)= a,(x, y, ~.) (5a) 

a2(x, y, z)= a2(g, y, z)= -a2(x, fi, z)= -a2(x, y, e). 
(5b) 

Then, to provide the invariance of ,~(r) under the 
glide plane n (Belov, Zagal'skaya, Litvinskaya & Ego- 
rov-Tismenko, 1980), the functions a~(r) should also 
have the additional property 

a,(x, y, z)= a,(½ + x, ½ + z, ½ + y). (6) 

Thus, being determined by (2), (5) and (6), the 
susceptibility ,~(r) is invariant under all symmetry 
operations which are included into the crystallo- 
graphic symbol Pm3n. All the other symmetry oper- 
ations of this space group may be regarded as some 
combination of those already considered and they 
give no additional properties of a~(r). Hence, we 
obtain the most general form of the tensor of X-ray 
susceptibility for th isspace  group. Note that ,~(r) is 
isotropic (i.e. ~,(r)cc/, I is the unit matrix) at the 
points 0, 0, 0 and ½, ½, ½ with cubic point symmetry 
m3 because at these points a~(x, y, z)=  a~(y,z, x )= 

a~(z, x, y) and a2(x, y, z ) = 0  [see (5b) and (6)]. The 
similar properties of ai(r) can be easily obtained for 
all cubic crystals (see Appendix). Naturally, these 
properties are not sufficient for the unique determina- 
tion of a~(r) but they impose strong restrictions on 
the structure amplitudes of both forbidden and non- 
forbidden reflections. 

F o r b i d d e n  r e f l e c t i o n s  

Because the susceptibility is supposed to be 
anisotropic, it is convenient to introduce the tensor 
structure ampl i tude /3 -  which is proportional to the 
Fourier component of the tensor ,~(r): 

~ n  = B ~ )~(r) exp (2 zriHr) dr, (7) 

where B = -v/(reA2); v is the volume of the unit cell; 
re is the classical electron radius; A is the X-ray 
wavelength; H is the reciprocal-lattice vector. From 
(2) and (7) one obtains the general form of ,~" in 
cubic crystals 

where 

(8) 

Fp kt = B ~ aj(x, y, z) exp [27ri(hx + ky + lz)] dr. (9) 

For example, let us determine the structure ampli- 
tudes of the hhl ATS reflections for space group Pm3n 
(l = 2n + 1). Taking into account (5) and (6), one can 
obtain from (9) the following expressions for the 
elements of ~hhl 

Flhh FI2hh I = = 0  (10a) 

Fhht _ Fhl lh FI 
I ~ 

=- ~ al(x, y, z)(cos 2 ~'hy cos 2 ~rlz 

- c o s  2~'ly cos 2~hz) cos 2~rhx dr (lOb) 
Fhlh __ Fhht 2 = = F 2  

B 
I a2(x, y, z)(sin 2zrhy sin 2 ~lz 

2 J 

- s i n  2zrly sin 2zrhz) cos 2zrhx dr. (10c) 

Here and below we denote as FI and F2 the nonzero 
elements of the structure amplitudes of ATS reflec- 
tions; F~ and F2 are complex valued because ai(r) 
are complex-valued functions. 

Thus, for space group Pm3n, the structure ampli- 
tudes of ATS reflections have the following tensor 
form: 

l=Thhl = - F I - . (11) 

\Z2 -F2 



V. E. DMITRIENKO 91 

Returning to the general case, note that those ATS 
reflections, which are connected with the glide planes 
inclined at 45 ° to coordinate axes, have the structure 
amplitudes given by (l l) in all cubic crystals with 
such glide planes. If the glide plane is parallel to a 
cube face then the consequent ATS reflections have 
the following structure amplitudes (see paper I): 

FT°kl = Fl 0 . (12) 

F2 0 

Finally, the screw-axis ATS reflections have the struc- 
ture amplitudes given by 

or by 

( °°° ~ool = 0 

F~ F2 
(13) 

floor= F2 - F ,  (14) 

0 0 

(see paper I). Note that the permutation of the Miller 
indices in ( l l)-(14) should be accompanied by the 
permutation of the elements of F hkl in accordance 
with (8). 

Table 1 contains the indices and the tensor form 
of the structure amplitudes of ATS reflections for all 
cubic crystals having ATS reflections. From Table 1 
it follows that some restrictions on parameters F~ and 
F2 may arise from the combined action of different 
glide planes. For instance, FI = F2 = 0 for the hhh 
forbidden reflections and, hence, these reflections 
remain extinguished even if the anisotropy of sus- 
ceptibility is taken into account; then, Fj or F2 (or 
even both of them) may be equal to zero in the case 
of the 001 ATS reflections. All these restrictions are 
the direct consequence of the symmetry properties of 
functions ai(r) (see Appendix); for the Pm3n space 
group, these restrictions are evident from (10). Besides 
these purely symmetrical restrictions, some additional 
restrictions arise if one makes certain assumptions 
about the real distribution of the anisotropy of sus- 
ceptibility inside a unit cell. 

A d d i t i o n a l  re s t r i c t ions  on  the  s t r u c t u r e  a m p l i t u d e s  

Until now it has been assumed that inside a unit cell 
the anisotropy of susceptibility has some unknown 
distribution which sould be invariant under the sym- 
metry transformations. To obtain further restrictions 
on the tensor structure amplitudes we can use the 
well known fact that the anisotropic part of X-ray 
susceptibility is connected mainly with the dispersion 
corrections to the tensor of atomic scattering factor 
f ;  tensor f may be written as 

j ' = f l  +fa,  (15) 

Table 1. The tensor form of the structure amplitudes 
and indices of A TS reflections in cubic crystals 

S p a c e  I n d i c e s  o f  
g r o u p  A T S  re f l ec t ions  

P2L3 OOl; l = 2n + l 
Pn3 O k l ; k + l = 2 n + l  
Fd3 Okl; k, 1 = 2n ; 

k + l = 4 n + 2  
Pa3 Ok/; k = 2n + l 
Ia3 Okl; k, ! = 2n + 1 
P4232 OOl; l = 2 n  + l  
F4j32 001; l = 4n +2 
P4332 001; l =  4n + ! 

001; I = 4n + 2 
P4j32 001; ! = 4n + l 

001; l = 4 n  +2 
I4j32 00/; I = 4n +2 
PF~3n hhl; l = 2n + l 

F43c  hhl; h, l=  2n + ! 
I7~3d h h l ; 2 h + l = 4 n + 2  

Pn3n Ok/; k + l = 2n + l 
hhl; I = 2n + l 

Pm'3n hhl; ! = 2n + 1 
P n 3 m  O k l ; k + l = 2 n + l  
F m 3 c  hhl; h, l = 2n + l 
F d 3 m  Ok/; k , / = 2 n ;  

k + l = 4 n  +2 
Fd3c  Okl; k, I = 2n ; 

k + l = 4 n + 2  
hhl; h, ! = 2n + 1 

l a 3 d  0k/; k , / = 2 n  + l  
hh l ;2h  + / = 4 n  +2 

Equations for ~hkl and 
s)~mmetry restrictions on 
F hkl for special ATS 
reflections 
(13) 
(12; 00/: F 2 = 0  
(12); 0 0 1 : F 2 = 0  

(12); 0 k 0 : F 2 = 0  
(12) 
(14) 
(14) 
( 1 3 ) ; F 2 = ~ i F I  
(14) 
( 1 3 ) ; F 2 = ± i F j  
(14) 
(14) 
(l 1); hhh: F~ = F 2 = 0; 

00/: Y 2 = 0 
(1 l);  hhh: Fj = F 2 = 0 
(11); hhh: F~ = F 2 = 0 ;  

001: F 2 = 0 
(12); 001: F 1 = F2 = 0  
(11); hhh: Fl = F2 = 0 
(11); hhh: F ~ = F 2 = 0  
(12); 0 0 1 : F 2 = 0  
(11); h h h : F j  = F 2 = 0  
(12); 0 0 1 : F 2 = 0  

(12); 0 0 1 : F 2 = 0  

(11); hhh: Fj = F 2 = 0 
(12); Okk: F 2 = -F~  
( l l ) ;  hhh: F~ = F 2=0 ;  

00h F 2 = 0 

where f is a conventional scattering factor which 
includes the isotropic part of the dispersion correc- 
tions; I is the unit matrix; f "  is the anisotropic part 
of the dispersion corrections [for uniqueness, we put 
Sp( f  a) = 0]. The discussion of the validity of (15) was 
given by Kolpakov, Bushuev & Kuz'min (1978). For 
our purposes,,,it is most important that the symmetry 
properties o f f  are determined by the point symmetry 
of the atomic position. Assuming (15) and taking into 
account the proportionality between the atomic scat- 
tering factors and X-ray susceptibility, one can easily 
realize that f "  has the same tensor form as the 
anisotropic part of )~(ro), where ro is the position of 
the atom in the crystal. Thus, one can use (2) to obtain 
the general tensor form o f f  a for any atomic position 
in cubic crystals. For example, f a =  0 for positions 
with cubic point symmetry; for positions at the three- 
fold axes, f "  contains only off-diagonal elements: z) 

f "  = 0 z , (16)  

xz f y z  

where all f~k are equal (except for sign); for positions 
with tetragonal point symmetry, f "  contains only 
diagonal elements, etc. Note that even if some atoms 
occupy the cry~allographically equivalent positions 
rj, their tensor f ]  may be different; for such atoms, 



92 ANISOTROPY OF X-RAY SUSCEPTIBILITY 

the principal values o f f ;  are thesame but the orienta- 
tions of the principal axes of f ;  may be different if 
the atomic positions rj are connected via rotation or 
mirror reflection. One can obtain the relationships 
between ~ from the equations for a~(rj) [see (5), (6) 
and Appendix]. 

Assuming (15) we obtain a conventionally looking 
expression for the tensor structure amplitude: 

Fn=~] ' , , exp(2zr iHr , , )=FnI+F "n, (17) 
m 

A 
where f,,, is the atomic scattering factor for the ruth 
atom in a unit cell; Fn is the conventional structure 
a m p l i t u d e ;  F 7an is the anisotropic part of the structure 
amplitude which arises from the anisotropic parts of 
atomic scattering factors:. 

If the tensor form of f,,, is restricted by the point 
symmetry of atomic positions then the tensor form 
of f in may be restricted too. Consider, as above, the 
A15 structure [general chemical formula A3B (V3Si, 
NbaGe, etc.)]. In a unit cell of this structure two B 
atoms occupy special positions (a) with cubic point 
symmetry m3; hence, i f (B )=  0 and B atoms make 
no contribution to the X-ray anisotropy. Six A atoms 
occupy special positions (c) (point symmetry ~,2m). 
For these positions, the atomic scattering factors are 
determined by two parameters./~ and f± ; fl and f~ are 
the principal values parallel and perpendicular to the 
fourfold axes respectively. It follows from (2), (5) and 
(6) that o 0) 

](A)= l0 f± 0 (18a) 
o A 

for A atoms occupying the sites (~, 0, ½; 3, 0, ½)" then, 

0 

i) (18b) 

for the sites (0, ½, ~; 0, ½, 3) and 

0 0) 
f (A)  = \ 00 j~O f±O (18c) 

for the sites (½, ~, 0; ½, 3, 0). From (17) and (18) we 
obtain the tensor structure amplitude of ATS reflec- 
tions in the A15 structure: 

(i °i) ~ h h l =  2(_ l)h/2(fi _d~ ) --I (19) 

0 

if l is odd and h is even; fhht=o if both l and h are 
odd. Note that A atoms in the sites (0, ½, ~; 0, ½, 3) 
make no contribution to the structure amplitudes of 
ATS reflections. 

Comparing (19) with the general expression (11) 
one can see that F, = 0 if h is odd and F2 = 0 for any 
h. Thus, assuming the localization of the anisotropy 
of susceptibility at the special atomic positions, one 
obtains additional restrictions on the tensor form and 
value of the structure amplitudes of ATS reflections. 
These restrictions significantly simplify the ex- 
pressions for the intensity and polarization properties 
of ATS reflections (see paper I); besides, the physical 
meaning of the elements of the tensor structure ampli- 
tudes becomes more evident. 

Nonforbidden reflections 

It is clear that the anisotropic parts of structure ampli- 
tudes are of the same order of magnitude both for 
forbidden and for nonforbidden reflections. In the 
latter case the anisotropic parts may be even more 
important (Templeton & Templeton, 1982) because 
the corrections to the intensityof nonforbidden reflec- 
tions are of the order of FHF 'm rather than ]~aH[2 
as in the case of ATS reflections (for nonforbidden 
reflections, we suppose that the anisotropic part ,~aH 
is much smaller than the conventional part FH). 

In the general case the tensor structure amplitude 
is given by (8) and (9) and is determined by six 
complex parameters: F TM, F TM and the circular per- 
mutations of hkL The number of independent para- 
meters decreases for special reflections because in 
this case some restrictions on F~ k' arise from (99) 
owing to the symmetry properties of a~(_.r). For 
example, for the space groups Pm3rn, Fm3m and 
hn3rn, (8) may be reduced to: 

r-hhl Ij, lhh r, hhl 
1"1 --2 

P""' = hh F )  (20) 
h' \ F',hh / 

(four independent parameters); 

= Fhlhh Fh2hh / (21) 

(two parameters); 

J 'a [ F°kk 0 0 I 
1 6 ° k k = / . ,  F k°k F~2 kk (22) 

\o  F °kk F~°k/ 

(three parameters); 

/r°,0 00) 
 o,0  ,oo 

(two parameters). Thus, even in the most symmetrical 
cases, the structure amplitudes can contain an 
anisotropic part. If only the symmetry properties of 
,~(r) are taken into account then all Fhi kl in (8), (20)- 
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(23) are different for different reflections and the total 
number of independent parameters is very large. But 
using the physical restrictions on the tensor form of 
atomic scattering factors (see the previous section) 
one obtains strong additional restrictions on F hkt too. 
Namely, if the atoms of some chemical element 
occupy one set of general positions in a unit cell then, 
for the j th atom of the set, the anisotropic part of the 
scattering factor fj~ contains at most five independent 
elements because f~ is a symmetrical tensor and 
Sp(f~.) = 0. For the nth atom of the set x all elements 
of j~^ are expressible via those five of ~ because f~ 
and f~ are mutually connected by symmetry transfor- 
mations. Hence, the anisotropic parts of all structure 
amplitudes depend on at most 5N independent com- 
plex parameters, where N is the number of the sets 
of positions occupied by the atoms of the same 
chemical element. These parameters are the same for 
different reflections because the dispersion correc- 
tions, which make the main contribution to f~, weakly 
depend on the scattering angle. The atoms of different 
elements make their contributions to the anisotropy 
in different parts of the X-ray spectrum (except for 
an occasional overlap of the absorption edges of 
different elements). 

It is clear that the number of independent para- 
meters is less than 5N if the atoms are in special 
positions with high point symmetry: the anisotropic 

^ H  part of F is absent if all the atoms occupy the 
positions with cubic symmetry, etc. (see the previous 
section). Considering again the A15 structure, one 
can obtain from (17) and (18) that the anisotropic 
part of the structure amplitude is expressible via the 
only parameter ~ - f ±  for any reflection: 

Bhk I 0 0 ) 
F " "  = ~(fll-  f ±) 0 ak ,  h 0 , 

0 0 Blh k 

where Bhkl = 2 Chl -- Ckh -- Clk and 

(24) 

Cht=[1 +exp( 'a ' ih ) ]exp[Tr i ( l  + h/2)]. (25) 

It is very important that the difference ~ - f ±  is 
approximately of the same value for all reflections 
because the dispersion corrections, which give the 
main contribution to ./~-f±, are almost independent 
on the reflection vector. 

Note that the tensor structure amplitudes were 
calculated earlier by Templeton & Templeton (1982) 
for space group P2~3 and by Belyakov, Dmitrienko 
& Osadchii (1982) for the space groups of 23 and 432 
crystal classes. 

Possible applications 

As was noted earlier, the anisotropy of X-ray suscepti- 
bility reaches its maximum value near X-ray absorp- 
tion edges where the anisotropic part of the atomic 

scattering factor may be of the order of a few 
electrons/atom (Templeton & Templeton, 1982; 
Dmitrienko, 1983). This anisotropy makes the struc- 
ture analysis more complicated (Templeton & 
Templeton, 1982). At the same time it provides new 
opportunities to study the atomic and electron struc- 

ture  of crystals. For these purposes, the selectivity of 
ATS reflections may be especially useful. For 
example, changing the X-ray wavelength one can 
study the selective contribution to the anisotropy from 
the atoms of different elements. Moreover, the contri- 
butions from the atoms of the same element may be 
also distinguished if these atoms occupy the positions 
with different point symmetry (see previous sections). 

Consider, as above, the A 15 structure (A3B). Some 
crystals with this structure (V3Si  , Nb3A1) demonstrate 
superconductivity at rather high temperatures and it 
is theoretically supposed that their superconductivity 
may be connected with the presence of the quasi- 
one-dirrtensional chains of A atoms. The electronic 
structure of such crystals may be sensitive to their 
quasi-one-dimensionality and, therefore, the atomic 
scattering factor of A atoms may be anisotropic near 
the absorption edge of these atoms. Because of the 
global cubic symmetry the absorption is isotropic and 
X-ray diffraction is the unique method to observe the 
anisotropy of the scattering factor. As it was shown 
above [see (19) and (24)], the anisotropic part of the 
structure amplitudes is proportional to ./~-f± where 
]~ and f !  are the scattering factors of A atoms for 
X-rays linearly polarized parallel and perpendicular 
to a quasi-one-dimensional chain respectively (the 
scattering factors of B atoms should be isotropic 
because of the local cubic symmetry of their posi- 
tions). Thus, the observation of the anisotropy of 
structure amplitudes may be useful for a better under- 
standing of the nature of superconductivity in crystals 
with A 15 structure. 

In some cases the ATS reflections may be used in 
structure analysis. Consider, for example, a crystal 
with the space group P2~3 containing four atoms in 
special positions (a) (point symmetry 3); x, x, x; i + x, 
1 ~-x ,  x; x, i +x, i - x ;  i - x ,  :~, i+x .  For 001 ( I=  2n + 1) 
ATS reflections, one obtains from (13), (16) and (17) 
that F~/F2 = i tan (27r/x). The intensity of these reflec- 
tions (for unpolarized incident beam) is proportional 
to 1 - cos  (47r/x)cos (2~), where ~ is the angle of 
rotation around the diffraction vector (see paper I); 
thus, parameter x can be determined from the 
azimuthal dependence of the intensity of ATS reflec- 
tions. 

It should be also emphasized that the wavelength 
dependence of the intensities of ATS reflections con- 
tains even more detailed information about the atomic 
environment than the fine structure of X-ray absorp- 
tion spectra which is usually used for the environment 
study. It is especially important that owing to their 
selectivity the ATS reflections may be used in those 
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cases when the observation of the absorption fine 
structure is practically impossible because of the 
strong background absorption from heavy atoms or 
from a great number of light atoms, as in the case of 
biological molecules. 

Conclusion 

It is shown above that both global and local symmetry 
of cubic crystals may impose some restrictions on the 
anisotropic parts of tensor structure amplitudes. From 
purely symmetrical considerations it follows that the 
glide-plane forbidden reflections remain extinguished 
if Ihl--Ikl = I/I; for 001 ATS reflections, some restric- 
tions may also arise from the simultaneous action of 
two different glide planes (see Table 1). More strong 
restrictions may be obtained under the natural 
assumption that the tensor form of atomic scatting 
factors is completely determined by the point sym- 
metry of atomic positions. But it is worth emphasizing 
that the latter assumption should be proved both 
experimentally and theoretically. The theoretical 
proof should be based on the detailed microscopic 
theory of X-ray susceptibility which has not been 
developed yet. 

The general properties of ATS reflections have been 
discussed in paper I; in cubic crystals they are the 
same. In particular, the polarization properties of 
ATS reflections are very unusual: in some cases, a 
o'-polarized incident beam can give a 7r-polarized 
diffracted one and vice versa; then, both the polariz- 
ation properties and the intensities of ATS reflections 
may vary during crystal rotation around the diffrac- 
tion vector. For nonforbidden reflections, similar 
effects should arise from the anisotropic part of struc- 
ture amplitudes but these effects will be small in 
comparison with the full intensity of the reflections. 
To observe them careful experiments are needed and 
in this case as in the case of ATS reflections syn- 
chrotron radiation seems to be the most appropriate 
tool because of its tunable wavelength and its polariz- 
ation properties. 

The author is grateful to Professor V. A. Belyakov 
for helpful discussions. 

APPENDIX 

In general, the tensor of X-ray susceptibility of cubic 
crystals depends on two functions a~(r) [see (2)]. 
Below, the properties of functions a~(r) are given for 
all cubic space groups. Those functions, which deter- 
mine the general form of the tensorial scattering factor 
of an atom placed at the point r = (x, y, z), have the 
same properties. These properties are the direct con- 
sequence of the space-group symmetry [see, as 
examples, (5) and (6)]. 

P23, F23, I23: 

a,(x, y, z)= a,(x, p, e)= a,(e, £ z)= a,(~, y, e) 
(A.l) 

a2(x , y, z )=  a2(x, )~ z)= -a2(~, 37, z )=  -a2(~, y, z). 

P213, I213" 

a,(x, y, z) = a,(½ + x, ½- y, ~.) = a,(~- x, 37, ½ + z) 

=a~(~,½+Y, ½-z)  (A.2) 
a2(x, y, z) = a2(½ + x, ½- y, ~) = -a2(½- x, 37, ½ + z) 

: -a2(~,½+Y,  ½-z).  

Pro3, Frn3, Ira3: (A.I) and 

a,(x, y, z)= a,(~, 37, ~). (A.3) 

Pn3: (A.1) and 

a,(x, y, z)= a,(½- x, ½- y, ½- z). (A.4) 

Fd3: (A.1) and 

a , ( x , y , z ) = a i ( ~ - x , ~ - y , ~ - z ) .  (A.5) 

Pa~3, Ia3: (A.2) and (A.3). 
P432, F432, I432: (A.1) and 

a,(x, y, z)=  a,(~, ~, )7). (A.6) 

P4232: (A.1) and 

a , = ( x , y , z ) = a , ( ½ - x ,  ½-z, ½-y). (A.7) 

F4132, P4332, I4132: (A.2) and 
I I ai(x, y, z) = a,(~ - x, :~ z, a - Y). (A.8) 

P4132: (A.2) and 

a , ( x , y , z )=a , (3 -x ,  3 - z , ] - y ) .  (A.9) 

P43rn, F~,3rn, l~,3m: (A.1)and 

ai(x, y, z) = ai(x, z, y). (A. 1 O) 

P43 n, F43 c: (A. 1) and 
I a,(x,y,z)=ai(½+x, ½+z,~+y). (A.11) 

1~,3d" (A.2) and 
1 a,(x ,y ,z)=a~(~+x,a+z,~+y) .  (A.12) 

Pm3m, Frn3rn, lrnT3m: (A.I), (A.3) and (A.10). 
Pn3n" (A.1)_, (A.4) and (A.6). 
Pm~3n, Frn3c: (A.1), (A.3) and (A.11). 
Pn3m" (A.I), (A.4) and (A.10). 
Fd~3m" (A.1), (A.5) and (A.10). 
Fd3c: (A.1), (A.5) and (A.I 1). 
Ia3d: (A.2), (A.3) and (A.12). 

Note that the obvious equations should be added 
for body-centred or face-centred groups respectively: 

a,(x, y, z)= a,(½ + x, ½ + y, ½ + z) (A.13) 

o r  

a,(x, y, z )=  a,(½ + x, ½ + y, z )=  a,(~ + x, y, ½ + z) 

= a,(x, ½ + y, ½ + z). (A.14) 
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In all equations for ai(r), the set of coordinates is 
chosen as in International Tables for X-ray Crystal- 
lography (1952); if the tables give two alternative 
origins (of coordinates) then the first one is adopted. 
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Abstract 

A method for choosing OD layers in a structure is 
given. For any structure one of four cases is possible: 
I. the structure cannot be interpreted as an OD struc- 
ture consisting of layers; 2. the OD layers are uniquely 
determined; 3. the limits between OD layers may be 
changed with keeping the OD groupoid family; and 
4. the limits may be changed with changing the OD 
groupoid family. 

Introduction 

Since OD theory has been developed it has proved 
its worth for the investigation of disordered structures 
and for the explanation of relations between poly- 
types (for some references see, for example, Table 1 
in Dornberger-Schiff, 1979). 

OD theory is based on the principle that interatomic 
forces decrease with increasing distance. A local 
arrangement of atoms occurring equivalently again 
and again in a structure does not necessarily enforce 
a three-dimensional periodicity of the total arrange- 
ment of all atoms in the structure. Because of the 
possible absence of three-dimensional periodicity, the 
symmetry relations within structures with (possible) 
disorder cannot be adequately described in the usual 
way by total symmetry operations which form space 
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groups. The geometrical means used instead by Dorn- 
berger-Schiff are partial coincidence operations 
which in their turn form groupoids (Brandt, 1926; 
Ehresmann, 1957). The partial coincidence operations 
refer to parts of the structure occurring equivalently 
again and again in the structure. These parts may be 
aperiodic blocks, one-dimensionally periodic rods, or 
two-dimensionally periodic layers. In the case of 
polytypes which differ in layer stacking sequence 
(Bailey et al., 1977) these parts are two-dimensionally 
periodic layers. OD theory is a geometrical approach 
and therefore these layers, called OD layers, are not 
identical with crystallochemical layers, although they 
often refer to the same region of the structure. OD 
layers reflect predominantly symmetry properties of 
two-dimensionally periodic parts. With the know- 
ledge about the OD layers and about the pairs of 
adjacent OD layers all possible polytypes of a sub- 
stance may be deduced, especially the MDO struc- 
tures, called simple or regular by other authors, disor- 
dered and periodic polytypes of any length may be 
deduced as well. All these theoretically possible struc- 
tures consisting of the same kinds of OD layers and 
the same kinds of layer pairs are said to belong to a 
family of OD structures (Dornberger-Schiff, 1964; 
Dornberger-Schitt & I3urovi~, 1975). Until now there 
have been no exact methods for choosing OD layers 
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